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ON THE T~~~~~~i~AL STATE OF AN ~~ERGR~~N~ SHAFT FILLER 
WITH A READfLY MIXING LIQUID* 

A.5. GALITSYN 

Temperature fields and ths thermal stresses induced by them in rock strata 
around a cylindrical or spherical underground shaft filled with readily 
mixing liquid is studied. Approximate analytical solutions are given for 
small dimensionless times of the quasi-static problem of tbermoelasticity, 
which enable the-shaft stability to be evaluated and enable the possibil- 
ity of its disintegration to be assessed. The results of calculations of 
the boundary layer of the strata, and of an analysis of the dynamics of 
the processes in them axe presented. 

In view of the use of artificially created underground shafts for storing liquefied gases 
and other forms of liquid xaw materials, the need arises to predict the heat and thermo- 
mechanical interaction of unsteady processes, due to the considerable initial temperature 
differencesof the liguid and rock strata. The initial period is of the greatest interest, 
when, owing to the strong mixing of liquid after the filling up the available capacity, and 
intense heat convection that are the dominant factors in heat exchange in a liquid, the heat 
exchange in the strata is accompanfad by large temperature gradients and stresses induced by 
them. 

For the conditions considered, the effective thermal conductivity of the liquid exceeds 
that of the rock by several orders of magnitudes hence in the mathematical formulation of the 
problem we need only take into account the specific heat of the liquid. This assumption to- 
gether with the assumption of perfect heat contact at the interface of the two media leads to 
the problem of heat conduction with boundary conditions that contain a time derivative /I/. 

Let u be the unknown temparature of the rock a<r<oo refexred to the initial tempera- 
ture difference in the system containing a cylindrical (~5 I) or spherical (y=2) shaft of 
radius a; T,” and T?O~are the initiaS temperature of the rock and the liquid, h and x are the 
thermal conductivity and temperature diffusivity of the homogeneous elastic rock, a,E and p 
are its elastic constants /2/, c and CO are the specific heat and the mass of liquid per unit 
surface of the shaft, and wand ol, are the radial compcnent of the displacement vector and 
thermal stresses in the rock. In this notation and assumptions the problem to be solved of 
the theriwmechanical state of an underground shaft containing readily mixing liquid can he 
written in the following unconnected system of equations of thermoelasticity in the quasi- 
static fcxmulation: 

(11 

au -_ 
at a+0 (r-a, t>O) 

~(a,O);rr1, u{f,Of==O, limEL==O; a=-$- 
- 

(4) 

~~(a, t)-0, limw=Iima,=O (y==i,z) (5) 

Equations (4) and (5) imply 
of the averaged temperature 

that the displacements in the rock are determined in terms 

by the relation 

Then 
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The unconnected quasi-static problem of thermoeiasticity fox y = 2 and the stationary 
boundary condition h (a,$) == C&X& was considered in detail in /2f, 

The unsteady problem of heat conduction (1) -(3) can be solved by the Laplace transforma- 

tion, with transforms of the solutions of the form 

where &(z} is the modified Bessel function. The original function of expression (8) can 
be theoretically obtained using the ~i~~-~llin integral by fine and coarse computatfons in 
the complex plane of the variable S, which lead to an incompfetc integral of a complex combi.na- 
rion of special functions. For thepurposesnoted at the beginning of the paper we can take, 
with sufficient accuracy far applications , in f8) instead af the function K, (if, the principal 
part of its asymptotic representaticn /3/, which leads to the formula 

in the space of the original. functfoas, which approximate the exact solution well when x&z*< 1. 
Transform (91 can be reduced ?CQ the following equivalent form: 

Consequently for the origirhsl functions of the required eahtions we have 

0.2) 

By virtue of the assumptions made before, the temperature of the liquid that fil.ls the 
shaft can be found from these sclutions by substituting T= II. 

Note that for a wide range af thermophysical parameters of rocks , and dimensions of shafts 
Fn (9) oJizZ10-~, so that for small xt/& it can be neglected and after introducing the dimen- 
sionless quantities 

we can represent solutions (12) in the single form 

(3.4) 

We shafl indicate the explLcit fosm of functions (6) and (71, taking into account that 
the time t appears in these formulas as a parameters. Beace it is more convenient to carry 
out the calculations in the space of the transforms where the transforms have a simpler form 
than (12). However the direct use of (Ilf leads to an analytically unsolvable integral, and 
we must therefore start from the exrnct solution (8). Taking into account the value of the 
gua&ature 
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i zn+‘K,, (t) dx = 2”I’ (n f 1) - b”+‘K,,+l (b) 
0 

and introducing the function 

after using the asymptotic representation of the function K,,(z) we find that for xtla2<1 

(15) 

In the case of y = 2 we start the calculations directly from (9), setting ala = 0. 
As the result, we have the function 

(16) 

After the introduction of the dimensionless variables (131, and the determination of the 
dimensionless displacements and stresses by the formulas 

From (15) and (16) we finally obtain 

(17) 

(18) 

Formulas (14) and (18) provide a complete description of the unsteady temperature fields 
and of the dynamics of the quasi-static stresses they produce in the neighbourhood of an 
underground shaft, without taking into account the stress-strain state of the rock, due to 
the forces of its own weight and the presence of a closed cavity. The latter problem is 
studied in detail in /4,5/, and is not considered here. For an evaluation of the shaft stabil- 
ity and to determine the possibility of its disintegration it is necessary to carry out a 
simple superposition of the appropriate solutions. 

From the point of view of the shaft stability the heatinteractionis of a local character 
/4/, and hence it is of the greatest practical interest to determine the stress-strain state 
of the layer immediately adjacent to it (E-i di). Some of the results are tabulated below 
where we show the temperature of the rock in the neighbourhood of the cylindrical (in italics) 
and spherical shafts multiplied by a factor of l(r, and also in Figs.l-3 (the continuous 
lines relate to y= i and the dashed ones to I== 2, and curves l-5 correspond to 7=iO-',lO-*, 
io-', io-1.i). A qualitiativeandguantitative analysis of the dynamics of the process, carried 
out on the basis of these results enables us to draw the following conclusions. 

Table 1 

7 t-Leo.01 0.05 0,10 0,~ 

lo-~ 7886 7946 25op 2444 237 226 0 0 
10-a 8285 8244 6323 6171 4164 3961 3 2 
10-l 6724 9991 62op 9054 5588 5309 1687 13x1 
1 3732 3764 3665 3904 3523 3959 2547 2079 



1) For fixed E= E">* the rock temperature monotonically approaches in time the tempera- 
ture of the liquid, but without attaining it, reaching the maximum value for the given F at 

the stationary point ~=*0. When r>r" the natural temperature field of the rock is restored, 
and the tsmpexatures of the rock and liquid asymptotically approach zero. The temperature 
maxima lie on a monotonically decreasing curve which in (E,%) variables can be constructed by 
solving the transcendental equation 

Baedc(‘I+BY’?)= (By&) B.P[-(jtf+pY-?l 
y'z 

(19) 

The quasi-steady mode of heat conduction in the rock layer O<f-l<O.i adjoining.the 
shaft surface occurs when rsitr*, and here the temperature curves for y= i and y= 2 differ 
insignificantly (see Table 1). In the calculations we always used the value B= 1.1875 obtained 
from actual heat-exchange conditions. 

2) In the formulation considered here the shaft contour, independently of the temperature 
field, is not deformed (Fig.1). When f>l, the displacements in the rock have a maximum at 
the point I?,%*) which does not coincide with the extremum of the function tl,(f,s). It can be 
determined by solving the transcendental equations 

~+p[B(Br+f-l)][(B- 6) exp[--BfiJ*l_ 
srerfc(q+EJ/I) + 

1 
saxp(-v) 

TV?; 1 
for y=f 

(20) 

(21) 

Fig.1 Fig.2 Fig.3 

The difference between the numerical values of the displacements for y- 1 and Y= 2 in 
the layer OF$-l<O.i essentially depends on time (it increases as T increases). 

3) When the liquid exerts no pressure in the shaft its surface is free of normal tempera- 
ture stresses (Fig.2) for all 7>0.~hen O>l a considerable difference is observed in the 
magnitude of compressive stresses for 7 =i and y= 2 whose dynamics include reaching an ex- 
tremal value at the fixed point g. The instant of time ?* that corresponds to the given point 
E* of the rock is calculated using Eqs.(ZO and (21). 

4) The tangential stresses (Fig.31 at &>i differ substantially for y=l and y=2: 

P$$(i,+) = 0, and the I& is proportional to the temperature of the shaft surface. When 

E>i these stresses differ in magnitude and sign: whereas when y=i for all E and 'F only 
stretching tangential stresses are observed, for y=5 2 they increase monotonically as & in- 
creases in the region of negative values, reach a positive maximum, and then approach steady 
negative values., Numerical experiments showed that the magnitude of the positive maximum of 

r(D) _Ipg is of the order of 10-. 
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FOUNDATIONS* 

Contact problems for non-uniformlyaging multilayered viscoelastic founda- 
tions are studied. It is assumed that the thickness of the top layer is 
much less than the characteristic dimension of tne area of contact. Integral 
equations of mixed problems containing Fredholm and Volterra operators are 
derived and a method for solving them is given. Basic versions of the non- 
uniform aging of a packet of layers are studied and the case in question is 
compared analytically with the classical case. Numerical computations of 
the characteristic parameters are given. 

1. We consider the contact problems of the frictionless impression of a rigid circular 
stamp, using a constant force P, intoamultilayered non-uniformly aging viscoelastic founda- 
tion consisting of: 

1) a thin non-uniformly aging layer and a uniformly aging layer of arbitrary thickness, 
without friction between the layers; 

2) a thin layer, a non-uniformly aging core foundation and a uniformly aging layer, with 
the first two layers ooupled to each other, and resting on the third; 

3) the packet is composed of the layers listed in 21, with zero friction between them. 
We shall call the layer thin if the characteristic dimension of the part of the layer 

stibjec&ed to the active load is much greater than its thickness. The layer thicknesses are 
h,l and H respectively. Smooth contact or coupling withthenon-deformable support occurs 
at the lower edge of the multilayer packet. The surface of the stamp base is described by 
the function g(r), and the region of contact by the inequality r<a. 

we write the eguations of state of the layermaterialsin the form /l/ 

dare eij(t,r,z) and S,j(t,r,z) are the deviators of the strain and stress tensors, respect- 
ively, 3s (t,r,z) is the volume strain, a(t,r,z) is the mean hydrostatic pressure, K (t, T) is 

the tensile creep kernel, C (&I) is d measure of the creep, r and z are cylindrical coordin- 

ates of a point of the body, r,, is the time of application of the load, X \s> is the non- 
uniform aging function, and Band Y denote the instantaneous modulus of elasticity and 
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